题目内容

已知△ABC的三个内角A,B,C满足:A+C=2B,
1
cosA
+
1
cosC
=-
2
cosB
,求cos
A-C
2
的值.
由题设条件知B=60°,A+C=120°.
-
2
cos60°
=-2
2

1
cosA
+
1
cosC
=-2
2

将上式化为cosA+cosC=-2
2
cosAcosC

利用和差化积及积化和差公式,上式可化为2cos
A+C
2
cos
A-C
2
=-
2
[cos(A+C)+cos(A-C)]

cos
A+C
2
=cos60°=
1
2
,cos(A+C)=-
1
2
代入上式得cos(
A-C
2
)=
2
2
-
2
cos(A-C)

cos(A-C)=2cos2(
A-C
2
)-1
代入上式并整理得4
2
cos2(
A-C
2
)+2cos(
A-C
2
)-3
2
=0
(2cos
A-C
2
-
2
)(2
2
cos
A-C
2
+3)=0

2
2
cos
A-C
2
+3≠0

2cos
A-C
2
-
2
=0.

从而得cos
A-C
2
=
2
2
.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网