ÌâÄ¿ÄÚÈÝ

11£®ÏÂÁи÷ʽ£º
£¨1£©${[{£¨-\sqrt{2}£©^{-2}}]^{-\frac{1}{2}}}=-\sqrt{2}$£»
£¨2£©ÒÑÖª${log_a}\frac{2}{3}£¼1$£¬Ôò$a£¾\frac{2}{3}$£»
£¨3£©º¯Êýy=2xµÄͼÏóÓ뺯Êýy=-2-xµÄͼÏó¹ØÓÚÔ­µã¶Ô³Æ£»
£¨4£©º¯Êýf£¨x£©=$\sqrt{m{x^2}+mx+1}$µÄ¶¨ÒåÓòÊÇR£¬ÔòmµÄȡֵ·¶Î§ÊÇ0£¼m¡Ü4£»
£¨5£©ÒÑÖªº¯Êýf£¨x£©=x2+£¨2-m£©x+m2+12Ϊżº¯Êý£¬ÔòmµÄÖµÊÇ2£®
ÆäÖÐÕýÈ·µÄÓУ¨3£©£¨5£©£®£¨°ÑÄãÈÏΪÕýÈ·µÄÐòºÅÈ«²¿Ð´ÉÏ£©

·ÖÎö ¸ù¾ÝÖ¸ÊýµÄÔËËãÐÔÖÊ£¬»¯¼òʽ×Ó£¬¿ÉÅжϣ¨1£©£»¸ù¾Ý¶ÔÊýº¯ÊýµÄÐÔÖÊ£¬Çó³öaµÄ·¶Î§£¬¿ÉÅжϣ¨2£©£»¸ù¾Ýº¯ÊýͼÏóµÄ¶Ô³Æ±ä»»£¬¿ÉÅжϣ¨3£©£»Çó³öÂú×ãÌõ¼þµÄmµÄ·¶Î§£¬¿ÉÅжϣ¨4£©£»¸ù¾Ýżº¯ÊýµÄ¶¨Ò壬¿ÉÅжϣ¨5£©£®

½â´ð ½â£º£¨1£©${[{£¨-\sqrt{2}£©}^{-2}]}^{-\frac{1}{2}}={[{£¨\sqrt{2}£©}^{-2}]}^{-\frac{1}{2}}=\sqrt{2}$£¬¹Ê´íÎó£»
£¨2£©ÒÑÖª${log_a}\frac{2}{3}£¼1$£¬Ôò$a£¼\frac{2}{3}$£¬»òa£¾1£¬¹Ê´íÎó£»
£¨3£©º¯Êýy=2xµÄͼÏóÓ뺯Êýy=-2-xµÄͼÏó¹ØÓÚÔ­µã¶Ô³Æ£¬¹ÊÕýÈ·£»
£¨4£©º¯Êýf£¨x£©=$\sqrt{m{x^2}+mx+1}$µÄ¶¨ÒåÓòÊÇR£¬ÔòmµÄȡֵ·¶Î§ÊÇ0¡Üm¡Ü4£¬¹Ê´íÎó£»
£¨5£©ÒÑÖªº¯Êýf£¨x£©=x2+£¨2-m£©x+m2+12Ϊżº¯Êý£¬Ôòf£¨-x£©=f£¨x£©£¬
¼´x2-£¨2-m£©x+m2+12=x2+£¨2-m£©x+m2+12£¬½âµÃ£ºm=2£¬¹ÊÕýÈ·£®
¹ÊÕýÈ·µÄÃüÌâÓУº£¨3£©£¨5£©£¬
¹Ê´ð°¸Îª£º£¨3£©£¨5£©

µãÆÀ ±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃÎªÔØÌ壬¿¼²éÁËÖ¸ÊýµÄÔËËãÐÔÖÊ£¬¶ÔÊýº¯ÊýµÄÐÔÖÊ£¬Í¼ÏóµÄ¶Ô³Æ±ä»»£¬º¯ÊýµÄ¶¨ÒåÓò£¬º¯ÊýµÄÆæÅ¼ÐÔµÈ֪ʶµã£¬ÄѶÈÖеµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø