题目内容
以椭圆
+y2=1的右焦点为焦点,且顶点在原点的抛物线标准方程为
| x2 |
| 3 |
y2=4
x
| 2 |
y2=4
x
.| 2 |
分析:依题意,可求得椭圆
+y2=1的右焦点,利用抛物线的简单性质即可求得答案.
| x2 |
| 3 |
解答:解:∵椭圆
+y2=1的右焦点F(
,0),
∴以F(
,0)为焦点,顶点在原点的抛物线标准方程为y2=4
x.
故答案为:y2=4
x.
| x2 |
| 3 |
| 2 |
∴以F(
| 2 |
| 2 |
故答案为:y2=4
| 2 |
点评:本题考查抛物线的标准方程,考查椭圆与抛物线的简单性质,属于中档题.
练习册系列答案
相关题目