题目内容
8.集合A={x|-2≤x≤5}(1)若集合B={2,4,6,8},求集合A∩B.
(2)若集合C={x|x2-4x+3>0},求集合A∩C.
分析 (1)根据交集的定义即可求出;
(2)先求出集合C,再根据交集的定义即可求出.
解答 解:(1)集合A={x|-2≤x≤5},B={2,4,6,8},
∴A∩B={2,4},
(2)集合C={x|x2-4x+3>0}={x|x<1或x>3},
∴A∩C={x|-2≤x<1或3<x≤5}.
点评 本题考查了集合的交集运算以及一元二次不等式的解法,属于基础题.
练习册系列答案
相关题目
16.实验测得五组(x,y)的值是(1,2),(2,3),(3,4),(4,4),(5,5),则y与x之间的回归直线的方程是( )
| A. | $\stackrel{∧}{y}$=x+1 | B. | $\stackrel{∧}{y}$=0.7x+1.5 | C. | $\stackrel{∧}{y}$=2 x+1 | D. | $\stackrel{∧}{y}$=x-1 |
17.山东某市2008年至2012年新建商品住宅每平方米的均价y
(单位:千元)的数据如表:
(Ⅰ)求y关于x的线性回归方程$\hat y=\hat b•x+\hat a$;
(Ⅱ)利用(Ⅰ)中的回归方程,分析从2008年到2012年该市新建商品住宅每平方米均价的变化情况,并预测该市2015年新建商品住宅每平方米的均价.
附:回归直线的斜率和截距的最小二乘估计公式分别为$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x•\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a=\bar y-\hat b•\bar x$.
(单位:千元)的数据如表:
| 年份 | 2008 | 2009 | 2010 | 2011 | 2012 |
| 年份序号x | 1 | 2 | 3 | 4 | 5 |
| 每平米均价y | 2.0 | 3.1 | 4.5 | 6.5 | 7.9 |
(Ⅱ)利用(Ⅰ)中的回归方程,分析从2008年到2012年该市新建商品住宅每平方米均价的变化情况,并预测该市2015年新建商品住宅每平方米的均价.
附:回归直线的斜率和截距的最小二乘估计公式分别为$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\bar x•\bar y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}}$,$\hat a=\bar y-\hat b•\bar x$.