题目内容
已知向量| a |
| b |
| 1 |
| 2 |
| a |
| a |
| b |
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,∠A为锐角且A+B=
| 7π |
| 12 |
分析:(1)函数f(x)=
•
=
sin(2x+
)+
,由2kπ-
≤2x+
≤2kπ+
,k∈z,求出函数f(x)的单调递增区间.
(2)在△ABC中,∠A为锐角,由f(A)=1,可得
sin(2A+
)+
=1,sin(2A+
) =
,故
A=
,再由 A+B=
,求得 B=
,由正弦定理得 AC的值.
| a |
| b |
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
(2)在△ABC中,∠A为锐角,由f(A)=1,可得
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
| π |
| 4 |
| ||
| 2 |
A=
| π |
| 4 |
| 7π |
| 12 |
| π |
| 3 |
解答:解:(1)函数f(x)=
•
=sinxcosx+
=
sin(2x+
)+
,
令 2kπ-
≤2x+
≤2kπ+
,k∈z,得 kπ-
≤x≤kπ+
,故函数f(x)的单调递增区间为
[kπ-
≤x≤kπ+
],k∈z.
(2)在△ABC中,∠A为锐角,由f(A)=1,BC=2,可得
sin(2A+
)+
=1,
∴sin(2A+
) =
,故 A=
.∵A+B=
,∴B=
.
在△ABC中,由正弦定理得
=
,∴AC=
=
.
| a |
| b |
| cos2x+1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
令 2kπ-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 8 |
| π |
| 8 |
[kπ-
| 3π |
| 8 |
| π |
| 8 |
(2)在△ABC中,∠A为锐角,由f(A)=1,BC=2,可得
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
∴sin(2A+
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
| 7π |
| 12 |
| π |
| 3 |
在△ABC中,由正弦定理得
| BC |
| sinA |
| AC |
| sinB |
| BC•sinB |
| sinA |
| 6 |
点评:本题考查两个向量的数量积公式的应用,正弦函数的单调性,正弦定理的应用,求出 A=
,是解题的关键.
| π |
| 4 |
练习册系列答案
相关题目