题目内容
使圆x2+y2=r2与x2+y2+2x-4y+4=0有公共点的充要条件是( )
A.r<
+1 B.r>
+1 C.|r -
|<1 D.|r-
|≤1
D
解析:
由x2+y2+2x-4y+4=0得:(x+1)2+(y-2)2=1,两圆心之间的距离为
,∵|r-1|≤
≤r+1,∴
-1≤r≤
+1,即-1≤r-
≤1,∴|r-
|≤1.
练习册系列答案
相关题目
题目内容
使圆x2+y2=r2与x2+y2+2x-4y+4=0有公共点的充要条件是( )
A.r<
+1 B.r>
+1 C.|r -
|<1 D.|r-
|≤1
D
由x2+y2+2x-4y+4=0得:(x+1)2+(y-2)2=1,两圆心之间的距离为
,∵|r-1|≤
≤r+1,∴
-1≤r≤
+1,即-1≤r-
≤1,∴|r-
|≤1.