题目内容

8.演绎推理“因为f′(x0)=0时,x0是f(x)的极值点,而对于函数f(x)=x3,f′(0)=0,所以0是函数f(x)=x3的极值点.”所得结论错误的原因是(  )
A.大前提错误B.小前提错误C.推理形式错误D.全不正确

分析 根据题意,由函数的极值与导数的关系分析可得大前提错误,结合演绎推理三段论的形式分析可得答案.

解答 解:∵大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,
因为对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,
∴大前提错误,
故选:A.

点评 本题考查演绎推理的基本方法,涉及导数与函数的极值的关系,关键是掌握演绎推理的三段论形式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网