题目内容

已知
(1)证明:
(2)若存在实数k和t,满足,试求出k关于t的关系式k=f(t).
(3)根据(2)的结论,试求出k=f(t)在(-2,2)上的最小值.

(1)详见解析,(2)(3).

解析试题分析:(1)利用向量数量积得:因为,所以(2)由可列k关于t的关系式k=f(t).本题若注意到则不需将的坐标代入,而是将整体化简,即(3)首先将函数变量分离,即,再利用对勾函数的单调性得出函数的最小值.利用函数单调性定义证明其增减性,先分区间,再设区间上任意两个数,作差变形后判断符号.即,由于所以,因此,也就是函数在单调递增,同理可得函数在单调递减.
试题解析:(1)

(2)
(3)

考点:向量垂直坐标表示

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网