题目内容
2.设△ABC内角A,B,C的对边分别为a,b,c.已知sin2A一sin2B=sinC(sinC一sinB).(1)求角A的值.
(2)若b+c=1,求a的取值范围.
分析 (1)根据正弦定理结合余弦定理进行求解即可求角A的值.
(2)根据余弦定理结合基本不等式 进行求解即可.
解答 解:(1)在△ABC中,∵sin2A一sin2B=sinC(sinC一sinB).
∴a2-b2=c(c-b)=c2-bc.
即b2+c2-a2=bc,
则cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}=\frac{1}{2}$,
则A=60°.
(2)由余弦定理可得a2=b2+c2-2bc•cosA=b2+c2-bc=(b+c)2-3bc=1-3bc.
∵b+c=1≥2$\sqrt{bc}$,∴bc≤$\frac{1}{4}$.当且仅当b=c取等号,
∴a2=1-3bc≥$\frac{1}{4}$,即a≥$\frac{1}{2}$.
再由a<b+c=1,可得$\frac{1}{2}$≤a<1,故边a的取值范围是[$\frac{1}{2}$,1).
点评 本题主要考查解三角形的应用,利用正弦定理和余弦定理以及基本不等式是解决本题的关键.
练习册系列答案
相关题目
13.2015年高考体检中,某校高三共有学生1000人,检查的身体的某项指标为由低到高的4个等级,具体如下表:
(1)若按分层抽样的方法从中抽取20人,再从这20人中抽取2人,求这2人的该项身体指标级别至少有1人小于2人的概率;
(2)若把该校高三学生该项指标中恰好为1级的频率视为概率,从这1000人中任选1人,若其该项指标恰好为1级则结束,否则再选取1人,依次选取,直至找到1人该项指标恰好为1级或选够4人,则结束选取,求结束时选取的人数的分布列与期望.
| 等级 | 1级 | 2级 | 3级 | 4级 |
| 人数 | 200 | 500 | 200 | 100 |
(2)若把该校高三学生该项指标中恰好为1级的频率视为概率,从这1000人中任选1人,若其该项指标恰好为1级则结束,否则再选取1人,依次选取,直至找到1人该项指标恰好为1级或选够4人,则结束选取,求结束时选取的人数的分布列与期望.
14.如果函数f(x)=$\sqrt{x}$在点x=x0处的瞬时变化率是$\frac{\sqrt{3}}{3}$,则x0的值是( )
| A. | $\frac{3}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 3 |