题目内容
在数列{an}中,a1=1,an=
(c为常数,n∈N*,n≥2).又a1,a2,a5成公比不为1的等比数列.
(Ⅰ)求证{
}为等差数列,并求c的值;
(Ⅱ)设{bn}:b1=
,bn=an-1an+1(n≥2,n∈N*),Sn为{bn}的前n项和.求
Sn.
| an-1 |
| can-1+1 |
(Ⅰ)求证{
| 1 |
| an |
(Ⅱ)设{bn}:b1=
| 2 |
| 3 |
| lim |
| n→∞ |
分析:(Ⅰ)由题意可得 an≠0,化简条件可得
-
=c,可得{
}为等差数列,由等差数列的定义求出{
}的通项公式,由 a22=a1a5 解得c的值.
(Ⅱ)先求出{bn}的通项公式为bn=
(n≥2),用裂项法求出{bn}的前n项和sn,从而求得
Sn的值.
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| an |
(Ⅱ)先求出{bn}的通项公式为bn=
| 1 |
| (2n-3)(2n+1) |
| lim |
| n→∞ |
解答:解:(Ⅰ)由题意可得 an≠0.否则,若存在an=0(n>1).由递增式必有an-1=0,从而导致a1=0,这与a1=1矛盾.
∴
-
= c,故{
}是以c为公差,
=1为首项的等差数列.
故
= 1+(n-1)c,∴an=
.
从而 a2=
,a5=
,由 a22=a1a5 解得 c=2或c=0.当c=0时,a1=a2=a5,舍去.故取 c=2.
(Ⅱ)an=
,故对{bn}:b1=
,bn=
(n≥2),Sn=b1+b2+b3+…+bn,当n≥2时,Sn=
+
[(1-
)+(
-
)+(
-
)+(
-
)+…+(
-
)+(
)-
]=
+
(1+
-
-
)=1-
(
+
)=
+
(1+
-
-
)=1-
(
-
).
故
Sn=1-
(
+
)=1.
∴
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| a1 |
故
| 1 |
| an |
| 1 |
| 1+(n-1)c |
从而 a2=
| 1 |
| 1+c |
| 1 |
| 1+4c |
(Ⅱ)an=
| 1 |
| 2n-1 |
| 2 |
| 3 |
| 1 |
| (2n-3)(2n+1) |
| 2 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 7 |
| 1 |
| 11 |
| 1 |
| 2n-5 |
| 1 |
| 2n-1 |
| 1 |
| 2n-3 |
| 1 |
| 2n+1 |
| 2 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 2 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
故
| lim |
| n→∞ |
| 1 |
| 4 |
| lim |
| n→∞ |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
点评:本题主要考查等差数列、等比数列的定义和性质,求等差数列的通项公式,用裂项法对数列进行求和,求数列的极限,求出Sn的值,是解题的难点,属于难题.
练习册系列答案
相关题目