题目内容
在数列{an}中,a1=2,an+1=an+2n+1(n∈N*).(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}满足bn=2log2(an+1-n),证明:(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
| n+1 |
分析:(1)先对关系式an+1=an+2n+1整理可得到数列{an-2n}为等差数列,进而可求出数列{an-2n}的通项公式,即可得到数列{an}的通项公式.
(2)根据(1)中的数列{an}的通项公式可得到bn的表达式,然后代入到(1+
)(1+
)(1+
)…(1+
)中,利用数学归纳法来进行证明.
(2)根据(1)中的数列{an}的通项公式可得到bn的表达式,然后代入到(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
解答:解:(1)(an+1-2n+1)-(an-2n)=an+1-an-2n=1
故数列{an-2n}为等差数列,且公差d=1.
an-2n=(a1-2)+(n-1)d=n-1,an=2n+n-1;
(2)由(1)可知an=2n+n-1,∴bn=2log2(an+1-n)=2n
(1+
)(1+
)(1+
)…(1+
)
=(1+
)(1+
)…(1+
)>
(1)当n=1时,(1+
)=
>
=
,不等式成立,
(2)假设n=k(k≥1)时不等式成立,
即(1+
)(1+
)(1+
)>
,
那么当n=k+1时,
(1+
)(1+
)(1+
)(1+
)
>(1+
)=
=
=
=
>
=
=
=
这说明,当n=k+1时不等式也成立
综上可知,对于Vn∈N*,原不等式均成立.
故数列{an-2n}为等差数列,且公差d=1.
an-2n=(a1-2)+(n-1)d=n-1,an=2n+n-1;
(2)由(1)可知an=2n+n-1,∴bn=2log2(an+1-n)=2n
(1+
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| b3 |
| 1 |
| bn |
=(1+
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n |
| n+1 |
(1)当n=1时,(1+
| 1 |
| 2 |
| 3 |
| 2 |
| 1+1 |
| 2 |
(2)假设n=k(k≥1)时不等式成立,
即(1+
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2k |
| k+1 |
那么当n=k+1时,
(1+
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2k |
| 1 |
| 2(k+1) |
>(1+
| 1 |
| 2(k+1) |
| 2k+3 | ||
2
|
k+
| ||
|
=
| ||||
|
| ||||
|
| ||
|
=
| ||
|
| k+2 |
| (k+1)+1 |
这说明,当n=k+1时不等式也成立
综上可知,对于Vn∈N*,原不等式均成立.
点评:本小题主要考查数列、数学归纳法和不等式的有关知识,考查推理论证、抽象概括、运算求解和探究能力,考查学生是否具有审慎思维的习惯和一定的数学视野.
练习册系列答案
相关题目