题目内容
已知在同一平面内| OA |
| OB |
| OC |
| OA |
| OB |
| OC |
| 0 |
| OA |
| OB |
| OC |
(I)求证:△ABC为正三角形;
(II)类比于(I),在同一平面内,若向量
| OA |
| OB |
| OC |
| OD |
| OA |
| OB |
| OC |
| 0 |
| OA |
| OB |
| OC |
| OD |
分析:(I)利用向量的运算法则将等式中的向量
,
,
用三角形的各边对应的向量表示,得到边的关系,得出三角形的形状.
(II)先设|
|=|
|=|
|=|
|=r,根据向量的运算得出:∠AOB=∠COD;∠AOD=∠BOC从而∠AOD+∠COD=180°即A、O、C三点共线及、O、D三点共线,又|
|=|
|=|
|=|
|得出四边形ABCD为矩形.
| OA |
| OB |
| OC |
(II)先设|
| OA |
| OB |
| OC |
| OD |
| OA |
| OB |
| OC |
| OD |
解答:解:
(I)证明:设|
|=|
|=|
|=r
则
+
+
=
?
+
=-
?(
+
)2=
2?(
+
)2=
2?cos∠AOB=-
?∠AOB=
(3分)
=
-
?
2=
2+
2-2
•
=3r2?|
|=
r同理|
|=|
|=
r=|
|
∴△ABC为正三角形(6分)
(II)四边形ABCD为矩形(8分)设|
|=|
|=|
|=|
|=r,则
+
=-
-
?(
+
)2=(-
-
) 2?2r2+2r2cos∠AOB=2r2+2r2cos∠COD?∠AOB=∠COD
同理∠AOD=∠BOC(10分)
又∠AOB+∠BOC+∠COD+∠DOA=360°
∴∠AOD+∠COD=180°即A、O、C三点共线
同理B、O、D三点共线又|
|=|
|=|
|=|
|
∴四边形ABCD为矩形.(12分)
| OA |
| OB |
| OC |
则
| OA |
| OB |
| OC |
| 0 |
| OA |
| OB |
| OC |
| OA |
| OB |
| OC |
| OA |
| OB |
| OC |
| 1 |
| 2 |
| 2π |
| 3 |
| AB |
| OB |
| OA |
| AB |
| OB |
| OA |
| OB |
| OA |
| AB |
| 3 |
| AB |
| BC |
| 3 |
| AC |
∴△ABC为正三角形(6分)
(II)四边形ABCD为矩形(8分)设|
| OA |
| OB |
| OC |
| OD |
| OA |
| OB |
| OC |
| OD |
| OA |
| OB |
| OC |
| OD |
同理∠AOD=∠BOC(10分)
又∠AOB+∠BOC+∠COD+∠DOA=360°
∴∠AOD+∠COD=180°即A、O、C三点共线
同理B、O、D三点共线又|
| OA |
| OB |
| OC |
| OD |
∴四边形ABCD为矩形.(12分)
点评:本题考查向量的运算法则及利用向量判断出三角形的形状.解答的基础是对向量运算和变形的熟悉掌握.
练习册系列答案
相关题目