题目内容
已知Sn=
+
+…+
,则S8=
.
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
| 29 |
| 45 |
| 29 |
| 45 |
分析:由于
=
(
-
),从而可求得
+
+
+…+
的值.
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| 8×(8+2) |
解答:解:∵
=
(
-
),
∴S8=
+
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]
=
(1+
-
-
)
=
×
=
.
故答案为:
.
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴S8=
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| 8×(8+2) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 10 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 10 |
=
| 1 |
| 2 |
| 58 |
| 45 |
=
| 29 |
| 45 |
故答案为:
| 29 |
| 45 |
点评:本题考查数列的求和,着重考查裂项法的应用,属于中档题.
练习册系列答案
相关题目