题目内容

15.在△ABC中,内角A,B,C的对边长分别为a,b,c,若$\frac{a}{cosA}$=$\frac{b}{2cosB}$=$\frac{c}{3cosC}$,则sinB=$\frac{2\sqrt{5}}{5}$.

分析 由$\frac{a}{cosA}$=$\frac{b}{2cosB}$=$\frac{c}{3cosC}$,利用正弦定理,可得tanA=$\frac{1}{2}$tanB=$\frac{1}{3}$tanC,再结合和角的正切公式,同角三角函数基本关系式,即可得出结论.

解答 解:∵$\frac{a}{cosA}$=$\frac{b}{2cosB}$=$\frac{c}{3cosC}$,
∴tanA=$\frac{1}{2}$tanB=$\frac{1}{3}$tanC,
∵tanB=tan(π-A-C)=-tan(A+C)=-$\frac{tanA+tanC}{1-tanAtanC}$=-$\frac{(\frac{1}{2}+\frac{3}{2})tanB}{1-\frac{1}{2}tanB×\frac{3}{2}tanB}$,
∴tan2B=4,
∴sinB=$\sqrt{1-\frac{1}{ta{n}^{2}B+1}}$=$\sqrt{1-\frac{1}{4+1}}$=$\frac{2\sqrt{5}}{5}$.
故答案为:$\frac{2\sqrt{5}}{5}$.

点评 本题考查正弦定理的运用,考查和角的正切公式,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网