题目内容
在数1和2之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记为An,令an=log2An,n∈N.
(1)求数列{An}的前n项和Sn;
(2)求Tn=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2.
(1)求数列{An}的前n项和Sn;
(2)求Tn=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2.
分析:(1)设构成递增的等比数列n+2个数分别为b1,b2,b3,…,bn+2,其中b1=1,bn+2=2.利用倒序相乘的方法,结合等比数列的性质算出An=2
,再由等比数列定义证出{An}是首项为A1=2
,公比为
的等比数列,由此不难算出数列{An}的前n项和Sn;
(2)由(1)的结论,算出an=
,从而得到tana2n•tana2n+2=tan(n+1)tan(n+2),根据两角差的正切公式结合配角的方法,证出等式tan(n+1)tan(n+2)=
-1(n∈N*),由此作为通项代入Tn的表达式,化简合并后即可得到
(n∈N*).
| n+2 |
| 2 |
| 2 |
| 2 |
(2)由(1)的结论,算出an=
| n+2 |
| 2 |
| tan(n+2)-tan(n+1) |
| tan1 |
|
解答:解:(1)根据题意,n+2个数构成递增的等比数列,
设为b1,b2,b3,…,bn+2,其中b1=1,bn+2=2,
可得An=b1•b2•…•bn+1•bn+2,…①;An=bn+2•bn+1•…•b2•b1,…②
由等比数列的性质,得b1•bn+2=b2•bn+1=b3•bn=…=bn+2•b1=2,
∴①×②,得
=(b1bn+2)•(b2bn+1)•…•(bn+1b2)•(bn+2b1)=2n+2.
∵An>0,∴An=2
.
因此,可得
=
=
(常数),
∴数列{An}是首项为A1=2
,公比为
的等比数列.
∴数列{An}的前n项和Sn=
=(4+2
)[(
)n-1].
(2)由(1)得an=log2An=log22
=
,
∵tan1=tan[(n+1)-1]=
,
∴tan(n+1)tann=
-1,n∈N*.
从而tana2n•tana2n+2=tan(n+1)tan(n+2)=
-1,n∈N*
∴
即Tn=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2
.
设为b1,b2,b3,…,bn+2,其中b1=1,bn+2=2,
可得An=b1•b2•…•bn+1•bn+2,…①;An=bn+2•bn+1•…•b2•b1,…②
由等比数列的性质,得b1•bn+2=b2•bn+1=b3•bn=…=bn+2•b1=2,
∴①×②,得
| A | 2 n |
∵An>0,∴An=2
| n+2 |
| 2 |
因此,可得
| An+1 |
| An |
2
| ||
2
|
| 2 |
∴数列{An}是首项为A1=2
| 2 |
| 2 |
∴数列{An}的前n项和Sn=
2
| ||||
1-
|
| 2 |
| 2 |
(2)由(1)得an=log2An=log22
| n+2 |
| 2 |
| n+2 |
| 2 |
∵tan1=tan[(n+1)-1]=
| tan(n+1)-tann |
| 1+tan(n+1)tann |
∴tan(n+1)tann=
| tan(n+1)-tann |
| tan1 |
从而tana2n•tana2n+2=tan(n+1)tan(n+2)=
| tan(n+2)-tan(n+1) |
| tan1 |
∴
|
|
|
|
即Tn=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2
|
点评:本小题主要考查等比数列的通项公式、数列的前n项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力,属于中档题.
练习册系列答案
相关题目