题目内容

在数1和2之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记为An,令an=log2An,n∈N.
(1)求数列{An}的前n项和Sn
(2)求Tn=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2
(1)根据题意,n+2个数构成递增的等比数列,
设为b1,b2,b3,…,bn+2,其中b1=1,bn+2=2,
可得An=b1•b2•…•bn+1•bn+2,…①;An=bn+2•bn+1•…•b2•b1,…②
由等比数列的性质,得b1•bn+2=b2•bn+1=b3•bn=…=bn+2•b1=2,
∴①×②,得
A2n
=(b1bn+2)•(b2bn+1)•…•(bn+1b2)•(bn+2b1)
=2n+2
∵An>0,∴An=2
n+2
2

因此,可得
An+1
An
=
2
n+3
2
2
n+2
2
=
2
(常数),
∴数列{An}是首项为A1=2
2
,公比为
2
的等比数列.
∴数列{An}的前n项和Sn=
2
2
[1-(
2
)
n
]
1-
2
=(4+2
2
)[(
2
)
n
-1]

(2)由(1)得an=log2An=log22
n+2
2
=
n+2
2

tan1=tan[(n+1)-1]=
tan(n+1)-tann
1+tan(n+1)tann

tan(n+1)tann=
tan(n+1)-tann
tan1
-1,n∈N*

从而tana2n•tana2n+2=tan(n+1)tan(n+2)=
tan(n+2)-tan(n+1)
tan1
-1,n∈N*

Tn=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2

=tan2•tan3+tan3•tan4+…+tan(n+1)tan(n+2)

=(
tan3-tan2
tan1
-1)+(
tan4-tan3
tan1
-1)+…+(
tan(n+2)-tan(n+1)
tan1
-1)

=
tan(n+2)-tan2
tan1
-n.

即Tn=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2
=
tan(n+2)-tan2
tan1
-n
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网