题目内容
| lim |
| n→∞ |
| 1 |
| 12+2 |
| 1 |
| 22+4 |
| 1 |
| 32+6 |
| 1 |
| n2+2n |
分析:由
=
=
(
-
),知
(
+
+
+…+
)=
(1+
-
),由此能导出其最终结果.
| 1 |
| n2+2n |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| lim |
| n→∞ |
| 1 |
| 12+2 |
| 1 |
| 22+4 |
| 1 |
| 32+6 |
| 1 |
| n2+2n |
| 1 |
| 2 |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| n+2 |
解答:解:∵
=
=
(
-
),
∴
(
+
+
+…+
)
=
[(1-
)+(
-
)+(
-
)+(
-
)+…+(
-
)]
=
(1+
-
)
=
.
故答案为:
.
| 1 |
| n2+2n |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴
| lim |
| n→∞ |
| 1 |
| 12+2 |
| 1 |
| 22+4 |
| 1 |
| 32+6 |
| 1 |
| n2+2n |
=
| 1 |
| 2 |
| lim |
| n→∞ |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
点评:本题考查数列的极限和性质,解题时要注意裂项求和公式的合理运用.
练习册系列答案
相关题目