题目内容

lim
n→∞
(
1
12+2
+
1
22+4
+
1
32+6
+…+
1
n2+2n
)
=
 
分析:
1
n2+2n
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
,知
lim
n→∞
(
1
12+2
+
1
22+4
+
1
32+6
+…+
1
n2+2n
)
=
1
2
lim
n→∞
  (1+
1
2
-
1
n+2
)
,由此能导出其最终结果.
解答:解:∵
1
n2+2n
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

lim
n→∞
(
1
12+2
+
1
22+4
+
1
32+6
+…+
1
n2+2n
)

=
1
2
lim
n→∞
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+(
1
4
-
1
6
)+…+(
1
n
-
1
n+2
)]

=
1
2
lim
n→∞
  (1+
1
2
-
1
n+2
)

=
3
4

故答案为:
3
4
点评:本题考查数列的极限和性质,解题时要注意裂项求和公式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网