题目内容
(2006•广州二模)若Sn=
+
+
+…+
(n∈N*),则
Sn=
.
| 1 |
| 12+2 |
| 1 |
| 22+4 |
| 1 |
| 32+6 |
| 1 |
| n2+2n |
| lim |
| n→∞ |
| 3 |
| 4 |
| 3 |
| 4 |
分析:化简数列的通项,利用裂项法,求出数列的和,然后通过数列极限的运算法则,求出极限.
解答:解:因为
=
(
-
),
所以Sn=
+
+
+…+
=
(
-
+
-
+
-
+…+
-
)
=
(1+
-
-
).
所以
Sn=
(1+
-
-
)=
(1+
)=
.
故答案为:
.
| 1 |
| n2+2n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
所以Sn=
| 1 |
| 12+2 |
| 1 |
| 22+4 |
| 1 |
| 32+6 |
| 1 |
| n2+2n |
=
| 1 |
| 2 |
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
所以
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
点评:本题考查数列通项公式的应用,裂项法求法数列的和,数列极限的应用,考查计算能力.
练习册系列答案
相关题目