题目内容

(2006•广州二模)若Sn=
1
12+2
+
1
22+4
+
1
32+6
+…+
1
n2+2n
(n∈N*),则
lim
n→∞
Sn
=
3
4
3
4
分析:化简数列的通项,利用裂项法,求出数列的和,然后通过数列极限的运算法则,求出极限.
解答:解:因为
1
n2+2n
=
1
2
 (
1
n
-
1
n+2
)

所以Sn=
1
12+2
+
1
22+4
+
1
32+6
+…+
1
n2+2n

=
1
2
(
1
1
-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

所以
lim
n→∞
Sn
=
lim
n→∞
 
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)
=
1
2
(1+
1
2
)
=
3
4

故答案为:
3
4
点评:本题考查数列通项公式的应用,裂项法求法数列的和,数列极限的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网