题目内容
已知等差数列{an}公差不为0,其前n项和为Sn,等比数列{bn}前n项和为Bn,公比为q,且|q|>1,则
(
+
)=
+
+
.
| lim |
| n→+∞ |
| Sn |
| nan |
| Bn |
| bn |
| 1 |
| 2 |
| q |
| q-1 |
| 1 |
| 2 |
| q |
| q-1 |
分析:设出等差数列的公差,求出前n项和,通项公式;求出等比数列的前n项和,通项公式,即可化简
+
,求出
(
+
).
| Sn |
| nan |
| Bn |
| bn |
| lim |
| n→+∞ |
| Sn |
| nan |
| Bn |
| bn |
解答:解:等差数列的公差为d,所以前n项和为Sn=na1+
d,an=a1+(n-1)d;
等比数列{bn}前n项和为Bn,公比为q,且|q|>1,Bn=
,bn=b1qn-1;
所以
(
+
)=
(
+
)
=
(
+
)
=
+
故答案为:
+
.
| n(n-1) |
| 2 |
等比数列{bn}前n项和为Bn,公比为q,且|q|>1,Bn=
| b1(1-qn) |
| 1-q |
所以
| lim |
| n→+∞ |
| Sn |
| nan |
| Bn |
| bn |
| lim |
| n→+∞ |
na1+
| ||
| n [a1+(n-1)d] |
| ||
| b1qn-1 |
=
| lim |
| n→+∞ |
| ||||||
|
| 1-qn |
| (1-q)qn-1 |
=
| 1 |
| 2 |
| q |
| q-1 |
故答案为:
| 1 |
| 2 |
| q |
| q-1 |
点评:本题是中档题,考查数列的通项公式与前n项和的求法,数列极限的应用,考查计算能力,注意公比的范围.
练习册系列答案
相关题目