题目内容
分析:先分别观察给出正方体的个数为:1,1+4,1+4+8,…总结一般性的规律,将一般性的数列转化为特殊的数列再求解.
解答:解:根据前面四个发现规律:f(2)-f(1)=4×1,
f(3)-f(2)=4×2,
f(4)-f(3)=4×3,
…
f(n)-f(n-1)=4(n-1)这n-1个式子相加可得:f(n)=2n2-2n+1.
当n=5时,f(5)=41.
故选C.
f(3)-f(2)=4×2,
f(4)-f(3)=4×3,
…
f(n)-f(n-1)=4(n-1)这n-1个式子相加可得:f(n)=2n2-2n+1.
当n=5时,f(5)=41.
故选C.
点评:本题主要考查归纳推理,其基本思路是先分析具体,观察,总结其内在联系,得到一般性的结论,若求解的项数较少,可一直推理出结果,若项数较多,则要得到一般求解方法,再求具体问题.
练习册系列答案
相关题目
观察下列图形中的小正方形的个数,则第n个图形中小正方形有( ) 
A、
| ||
B、
| ||
C、
| ||
D、
|