题目内容
设数列{an},a1=(1)求证:{an-
}为等比数列;
(2)求an;
(3)求{an}的前n项和Sn.
(1)证明:∵α+β=
,αβ=
代入3α-αβ+3β=1得an=
an-1+
,
∴=
=
=
为定值.
∴数列{an-
}是等比数列.
(2)解:∵a1-
=
-
=
,
∴an-
=
×(
)n-1=(
)n.
∴an=(
)n+
.
(3)解:Sn=(
+
+…+
)+
=
+
=
-
.
练习册系列答案
相关题目