题目内容
已知a>1,λ>0,求证:loga(a+λ)>loga+λ(a+2λ).分析:利用作差法化简代数式,比较大小,可推得结论.
解答:证明:loga(a+λ)-log(a+λ)(a+2λ)
=
-
=
∵a>1,λ>0,
∴lga>0,lg(a+2λ)>0,且lga≠lg(a+2λ).
∴lga•lg(a+2λ)<[(
)]2
=[
]2<[
]2=lg2(a+λ).
∴
>0.
∴loga(a+λ)>log(a+λ)(a+2λ).
=
| lg(a+λ) |
| lga |
| lg(a+2λ) |
| lg(a+λ) |
=
| lg2(a+λ)-lga•lg(a+2λ) |
| lga•lg(a+λ) |
∵a>1,λ>0,
∴lga>0,lg(a+2λ)>0,且lga≠lg(a+2λ).
∴lga•lg(a+2λ)<[(
| lga+lg(a+2λ) |
| 2 |
=[
| lg(a2+2aλ) |
| 2 |
| lg(a+λ)2 |
| 2 |
∴
| lg2(a+λ)-lga•lg(a+2λ) |
| lgalg(a+λ) |
∴loga(a+λ)>log(a+λ)(a+2λ).
点评:本题考查对数值大小比较,对数的换底公式,对数的性质,是中档题.
练习册系列答案
相关题目
已知A(-3,4,0),B(2,-1,5),点P在z轴上,且|PA|=|PB|,则点P的坐标为( )
A、(0,0,
| ||
B、(0,0,
| ||
C、(0,0,
| ||
| D、(0,0,1) |