题目内容
7、设向量a,b满足|a|=3,|b|=4,a•b=0.以a,b,a-b的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )
分析:先根据题设条件判断三角形为直角三角形,根据三边长求得内切圆的半径,进而看半径为1的圆内切于三角形时有三个公共点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,进而可得出答案.
解答:解:∵向量a•b=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,
∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,
对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,
但5个以上的交点不能实现.
故选B
∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,
对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,
但5个以上的交点不能实现.
故选B
点评:本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.
练习册系列答案
相关题目