题目内容

已知x∈R,求证:1+2x4≥x2+2x3.

证法一:1+2x4-(x2+2x3)

=2x3(x-1)-(x-1)(x+1)

=(x-1)(2x3-x-1)

=(x-1)2(2x2+2x+1)

=(x-1)2[(x+1)2+x2]≥0,

即1+2x4-(x2+2x3)≥0.

所以1+2x4≥x2+2x3.

证法二:1+2x4-(x2+2x3)

=x4-2x3+x2+x4-2x2+1

=x2(x-1)2+(x2-1)2≥0.

即1+2x4-(x2+2x3)≥0.

所以1+2x4≥x2+2x3.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网