题目内容
已知函数![]()
(1)当
时,求函数
的极值;
(2)若函数
在定义域内为增函数,求实数m的取值范围;
(3)若
,
的三个顶点
在函数
的图象上,且
,
、
、
分别为
的内角A、B、C所对的边。求证:![]()
(1)
的极大值为
,
的极小值为-2 (2)
(3)证明详见解析.
解析试题分析:(1)首先求出函数的定义域
,然后求出函数
的导函数
,在求出
时,
=0的根,求出函数的单调区间,找到函数的极值即可.(2)由函数
在定义域内为增函数,可得x>0时,![]()
恒成立,分离出m,得
,根据基本不等式得
,即
的最大值是
,即
;(3)由
在
为增函数,
,
,在并根据向量的数量积,去证明
即可.
试题解析:解:(1)
的定义域为![]()
![]()
时,
=
,得![]()
随
的变化情况如下表:
![]()
![]()
![]()
1
![]()
+ ![]()
+ ![]()
![]()
![]()
假期作业青海人民出版社系列答案
衔接教材学期复习寒假吉林教育出版社系列答案
书香天博寒假作业西安出版社系列答案
智趣寒假温故知新系列答案
桂壮红皮书假期生活寒假作业系列答案
和谐假期云南科技出版社系列答案
快乐寒假广西师范大学出版社系列答案
学习与探究寒假学习系列答案
高中新课程评价与检测寒假作业系列答案
波波熊寒假作业江西人民出版社系列答案