题目内容
15.x,y∈R,若|x|+|y|+|x-1|+|y-1|≤2,则x+y的取值范围为( )| A. | [-2,0] | B. | [0,2] | C. | [-2,2] | D. | (0,2) |
分析 根据绝对值的意义,|x|+|y|+|x-1|+|y-1|的最小值为2,再根据条件可得只有|x|+|y|+|x-1|+|y-1|=2,此时,0≤x≤1,0≤y≤1,从而求得x+y的范围.
解答 解:解:根据绝对值的意义可得|x|+|x-1|表示数轴上的x对应点到0、1对应点的距离之和,其最小值为1;
|y|+|y-1|表示数轴上的y对应点到0、1对应点的距离之和,其最小值为1;
故|x|+|y|+|x-1|+|y-1|的最小值为2.
再根据|x|+|y|+|x-1|+|y-1|≤2,可得 只有|x|+|y|+|x-1|+|y-1|=2,
此时,0≤x≤1,0≤y≤1,∴0≤x+y≤2,
故选:B.
点评 本题主要考查绝对值的意义,绝对值不等式的解法,属于中档题.
练习册系列答案
相关题目
10.设n∈N*,f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,计算得f(2)=$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,观察上述结果,可推测一般结论为( )
| A. | f(n)≥$\frac{lo{g}_{2}n+2}{2}$(n∈N*) | B. | f(2n)≥$\frac{n+2}{2}$(n∈N*) | ||
| C. | f(2n)≥$\frac{lo{g}_{2}n+2}{2}$(n∈N*) | D. | f(2n)≥$\frac{n+2}{2}$(n∈N*) |
20.已知奇函数f(x)是定义在R上的可导函数,其导函数为f′(x),当x>0时有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)+4f(-2)<0的解集为( )
| A. | (-∞,-2012) | B. | (-2016,-2012) | C. | (-∞,-2016) | D. | (-2016,0) |