题目内容
2.某射手有4发子弹,射击一次命中目标的概率为0.9,如果命中就停止射击,否则一直到子弹用尽,用ξ表示用的子弹数,则P(ξ=4)等于( )| A. | 0.0009 | B. | 0.001 | C. | 0.009 | D. | 以上都不对 |
分析 ξ表示前三次均没有命中,第四次或命中,或没有命中,由此能求出P(ξ=4).
解答 解:ξ表示前三次均没有命中,第四次或命中,或没有命中,
∴P(ξ=4)=0.13×0.1+0.13×0.9=0.13=0.001.
故选:B.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.
练习册系列答案
相关题目
3.设a1,b1,c1,a2,b2,c2均为非零实数,又设不等式a1x2+b1x+c1>0和不等式a2x2+b2x+c2>0的解集分别为M和N,如果$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$=$\frac{{c}_{1}}{{c}_{2}}$,则( )
| A. | M=N | B. | M?N | ||
| C. | M⊆N | D. | 以上答案均不正确 |
7.为了了解在校学生“通过电视收看世界杯”是否与性别有关,从全校学生中随机抽取30名学生进行了问卷调查,得到了如下列联表:
已知在这30名同学中随机抽取1人,抽到“通过电视收看世界杯”的学生的概率是$\frac{8}{15}$.
(Ⅰ)请将上面的列联表补充完整,并据此资料分析“通过电视收看世界杯”与性别是否有关?
(Ⅱ)若从这30名同学中的男同学中随机抽取2人参加一活动,记“通过电视收看世界杯”的人数为X,求X的分布列和均值.
| 男生 | 女生 | 合计 | |
| 收看 | 10 | ||
| 不收看 | 8 | ||
| 合计 | 30 |
(Ⅰ)请将上面的列联表补充完整,并据此资料分析“通过电视收看世界杯”与性别是否有关?
(Ⅱ)若从这30名同学中的男同学中随机抽取2人参加一活动,记“通过电视收看世界杯”的人数为X,求X的分布列和均值.
11.将一枚质地均匀的硬币连续掷3次,则“出现正面的次数多于反面”的概率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{8}$ |