题目内容
2.已知α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,sin(α+β)=$\frac{5}{13}$,求sinα的值.分析 由已知可求范围α+β∈($\frac{π}{2}$,$\frac{3π}{2}$),利用同角三角函数基本关系式可求cos(α+β),sinβ的值,利用角的关系α=(α+β)-β,根据两角差的正弦函数公式即可化简求值.
解答 解:∵α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),
∴α+β∈($\frac{π}{2}$,$\frac{3π}{2}$),…1分
∴cos(α+β)=-$\sqrt{1-si{n}^{2}(α+β)}$=-$\frac{12}{13}$,…3分
∴sinβ=$\sqrt{1-co{s}^{2}β}$=$\frac{4}{5}$,…5分
∴sinα=sin[(α+β)-β]=sin(α+β)cosβ-cos(α+β)sinβ=$\frac{5}{13}×(-\frac{3}{5})$-(-$\frac{12}{13}$)×$\frac{4}{5}$=$\frac{33}{65}$…8分
点评 本题主要考查了同角三角函数基本关系式,两角差的正弦函数公式在三角函数化简求值中的应用,属于基础题.
练习册系列答案
相关题目
17.已知A(1,-3),B(8,$\frac{1}{2}$)且A,B,C共线,则C点的坐标可能是( )
| A. | (-9,1) | B. | (9,-1) | C. | (9,1) | D. | (-9,-1) |
7.每一个音都是纯音合成的,纯音的数字模型是函数y=Asinωt.音调、响度、音长、音色等音的四要素都与正弦函数及其参数(振幅、频率)有关.我们听到声音是由许多音的结合,称为复合音.若一个复合音的函数是y=$\frac{1}{4}$sin4x+$\frac{1}{6}$sin6x,则该复合音的周期为( )
| A. | $\frac{3π}{2}$ | B. | π | C. | $\frac{2π}{3}$ | D. | $\frac{π}{6}$ |