题目内容
过抛物线y2=2px(p>0)的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=3p,则|AB|等于( )A.2p B.4p C.6p D.8p
B
解析:焦点弦|AB|=x1+x2+p=4p.
故选B.
练习册系列答案
相关题目
过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,与抛物线的准线的交点为B,点A在抛物线准线上的射影为C,若
=
,
•
=48,则抛物线的方程为( )
| AF |
| FB |
| BA |
| BC |
| A、y2=4x | ||
| B、y2=8x | ||
| C、y2=16x | ||
D、y2=4
|
过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A、B两点,O为抛物线的顶点.则△ABO是一个( )
| A、等边三角形 | B、直角三角形 | C、不等边锐角三角形 | D、钝角三角形 |