题目内容

2.已知函数f(x)=$|\begin{array}{l}{2sinx}&{m}\\{cos2x}&{cosx}\end{array}|$的图象关于直线x=$\frac{π}{8}$对称,则f(x)的单调递增区间为[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.

分析 利用矩阵运算及正弦函数的图象的对称性求得m的值,再利用两角和差的正弦公式、正弦函数的单调性求得f(x)的单调递增区间.

解答 解:∵函数f(x)=$|\begin{array}{l}{2sinx}&{m}\\{cos2x}&{cosx}\end{array}|$=2sinxcosx-mcos2x=sin2x-mcos2x的图象关于直线x=$\frac{π}{8}$对称,
∴f(0)=f($\frac{π}{4}$),即-m=1,即m=-1.
则f(x)=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z,
求得 kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$(k∈Z),故函数f(x)的单调递增区间为[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z,
故答案为:[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.

点评 本题主要考查矩阵、两角和差的正弦公式、正弦函数的单调性以及图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网