题目内容
等于 ( )
A. B. C. D.
D 解:.
如图,双曲线-=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则
(1)双曲线的离心率e=________;
(2)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=________.
已知长为1+的线段AB的两个端点A、B分别在x轴、y轴上滑动,P是AB上一点,且=,求点P的轨迹C的方程.
已知点F是双曲线-=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,△ABE是锐角三角形,则该双曲线的离心率e的取值范围是( )
A.(1,+∞) B.(1,2)
C.(1,1+) D.(2,1+)
已知数列,其前项和为. 经计算得:
.
(Ⅰ)观察上述结果,猜想计算的公式;
(Ⅱ)用数学归纳法证明所提猜想..
下列说法正确的是( )
A.三点确定一个平面 B.四边形一定是平面图形
C.梯形一定是平面图形 D.平面和平面有不同在一条直线上的三个交点
如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点,PA=AD.
求证: EF⊥平面PCD.
设函数
(Ⅰ) 当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.
(Ⅲ)若对任意及任意,恒有 成立,求实数的取值范围.