题目内容
已知曲线C1:ρcos(θ+
)=
;曲线C2:ρ2=
.
(1)试判断曲线C1与C2的交点个数;
(2)若过点M(1,0)直线l与曲线C2交于两个不同的点A,B,求
的取值范围.
| π |
| 4 |
| ||
| 2 |
| 3 |
| 2-cos2θ |
(1)试判断曲线C1与C2的交点个数;
(2)若过点M(1,0)直线l与曲线C2交于两个不同的点A,B,求
| |MA|•|MB| |
| |AB| |
分析:(1)分别把ρcos(θ+
)=
和ρ2=
化为直角坐标方程得x-y=1和x2+3y2=3,联立方程组,根据方程组解的个数可判断交点个数;
(2)分两种情况进行讨论:①当直线l存在斜率时,设l的方程为y=k(x-1),A(x1,y1),B(x2,y2),联立直线l方程与曲线C2的方程消掉y得x的二次方程,由韦达定理及弦长公式可表示
为关于k的函数,由k2范围可得
的范围;当直线l不存在斜率时,易求A、B坐标及|MA|、|MB|、|AB|,此时可求
的值,综合①②可得答案;
| π |
| 4 |
| ||
| 2 |
| 3 |
| 2-cos2θ |
(2)分两种情况进行讨论:①当直线l存在斜率时,设l的方程为y=k(x-1),A(x1,y1),B(x2,y2),联立直线l方程与曲线C2的方程消掉y得x的二次方程,由韦达定理及弦长公式可表示
| |MA|•|MB| |
| |AB| |
| |MA|•|MB| |
| |AB| |
| |MA|•|MB| |
| |AB| |
解答:解:(1)由ρcos(θ+
)=
,得
ρ(cosθ-sinθ)=
,
所以x-y=1,
由ρ2=
,得ρ2(3-2cos2θ)=3,
所以3(x2+y2)-2x2=3,即x2+3y2=3,
由
得2x2-3x=0,解得x=0或x=
,
所以曲线C1与C2的交点有两个;
(2)①当直线l存在斜率时,设l的方程为y=k(x-1),A(x1,y1),B(x2,y2),
由
得(1+3k2)x2-6k2x+3k2-3=0,
△=36k4-4(1+3k2)(3k2-3)>0,即2k2+1>0恒成立,
则x1+x2=
,x1x2=
,
|MA|=
|x1-1|,|MB|=
|x2-1|,|AB|=
|x1-x2|,
=
=
=
=
•
=
•
,
又k2≥0,所以
<
≤
•
=
;
②当直线l不存在斜率时,把x=1代入x2+3y2=3得y=±
,
此时
=
=
,
综合①②得
的取值范围为[
,
].
| π |
| 4 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
所以x-y=1,
由ρ2=
| 3 |
| 2-cos2θ |
所以3(x2+y2)-2x2=3,即x2+3y2=3,
由
|
| 3 |
| 2 |
所以曲线C1与C2的交点有两个;
(2)①当直线l存在斜率时,设l的方程为y=k(x-1),A(x1,y1),B(x2,y2),
由
|
△=36k4-4(1+3k2)(3k2-3)>0,即2k2+1>0恒成立,
则x1+x2=
| 6k2 |
| 1+3k2 |
| 3k2-3 |
| 1+3k2 |
|MA|=
| 1+k2 |
| 1+k2 |
| 1+k2 |
| |MA|•|MB| |
| |AB| |
| (1+k2)|x1-1||x2-1| | ||
|
| ||
| |x1-x2| |
=
| ||||||
|
| ||
| 6 |
|
| ||
| 6 |
1+
|
又k2≥0,所以
| ||
| 6 |
| |MA|•|MB| |
| |AB| |
| ||
| 6 |
| 2 |
| ||
| 3 |
②当直线l不存在斜率时,把x=1代入x2+3y2=3得y=±
| ||
| 3 |
此时
| |MA|•|MB| |
| |AB| |
(
| ||||
|
| ||
| 6 |
综合①②得
| |MA|•|MB| |
| |AB| |
| ||
| 6 |
| ||
| 3 |
点评:本题考查直线、椭圆方程及其位置关系,考查极坐标方程与直角坐标方程的互化及弦长公式,考查分类讨论思想,考查学生分析解决问题的能力,(2)问中要考虑周全,直线l斜率不存在情况易漏.
练习册系列答案
相关题目