题目内容

理 本小题满分12分)

 
    如图在直三棱柱ABC – A1B1C1中,∠BAC = 90°,AB = AC = a,AA1 = 2a,D为BC的中点,E为CC1上的点,且CE = CC1

   (I)求三棱锥B – AB1D的体积;

   (II)求证:BE⊥平面ADB1

 (Ⅲ)求二面角B—AB1—D的大小.

(I)    (Ⅲ)arcsin


解析:

(Ⅰ)∵AB=AC=a,∠BAC=90°,D为BC中点

B1B=C1C=A1A=2a,

  ………………2分

 …………4分

解法一:(Ⅱ)由AB=AC,D是BC的中点,得AD⊥BC

从而AD⊥平面B1BCC1   ,又BE平面B1BCC1,所在AD⊥BE …………6分

由已知∠BAC=90°,AB=AC=a,得

在Rt△BB1D中,

在Rt△CBE中,

于是∠BB1D=∠CBE,设EB∩DB1=G

∠BB1D+∠B1BG=∠CBE+∠B1BG=90°,则DB1⊥BE,又AD∩DB1=D

故BE⊥平面ADB1   ……………………8分

(Ⅲ)过点G作GF⊥AB1于F,连接BF

由(Ⅰ)及三垂线定理可知∠BFG是二面角B—AB­1—D的平面角   …………10分

在Rt△ABB1中,由BF·AB1=BB1·AB,得

在Rt△BDB1中,由BB1·BD=BG·DB1,得BG=

所以在Rt△BFG中,

故二面角B—AB—D的大小为arcsin  ………………12分

解法二:

解法:(Ⅱ)如图,建立空间直角坐标系A-xyz  …………2分

可知A(0,0,0),B(a,0,0),C(0,a,0),D(),

B1(a,0,2a),E(0,a,) …………4分

可得

  ………………6分

于是得

可知BE⊥AD,BE⊥DB1

又AD∩DB1=D,故BE⊥平面ADB1  …………8分

(Ⅲ)由(Ⅱ)知平面ADB1的法向量,平面ABB1的法向量

于是   …………10分

故二面角B—AB1—D的大小为arccos   ………………12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网