题目内容
在三角形ABC中,a=2,C=
,cos
=
,求三角形ABC的面积S.
| π |
| 4 |
| B |
| 2 |
2
| ||
| 5 |
由题意,得cosB=
,B为锐角,sinB=
,
sinA=sin( π-B-C )=sin(
-B )=
,
由正弦定理得c=
,
∴S=
ac•sinB=
×2×
×
=
.
| 3 |
| 5 |
| 4 |
| 5 |
sinA=sin( π-B-C )=sin(
| 3π |
| 4 |
7
| ||
| 10 |
由正弦定理得c=
| 10 |
| 7 |
∴S=
| 1 |
| 2 |
| 1 |
| 2 |
| 10 |
| 7 |
| 4 |
| 5 |
| 8 |
| 7 |
练习册系列答案
相关题目