题目内容

已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小,并判断△ABC的形状。
解:∵2cos2B-8cosB+5=0,
∴2(2cos2B-1)-8cosB+5=0
∴4cos2B-8cosB+3=0,
即(2cosB-1)(2cosB-3)=0
解得cosB=或cosB=(舍去)
∵0<B<π,
∴B=
∵a,b,c成等差数列,
∴a+c=2b
∴cosB=
化简得a2+c2-2ac=0,解得a=c
∴△ABC是等边三角形。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网