题目内容
数列{an}中a1=2,an+1=
(an+
),{bn}中bn • log9
=1,n∈N*.求证:数列{bn}为等比数列,并求出其通项公式;
| 1 |
| 2 |
| 1 |
| an |
| an+1 |
| an-1 |
证明:由bn+1 • log9
=1?bn+1 • log9
=1?bn+1 • log9(
)2=1?2bn+1 • log9
=1又bn • log9
=1
∴bn+1=
bn
又n=1时,b1 • log9
=1?b1=2
∴{bn}为等比数列,b1=2,q=
,∴bn=2 • (
)n-1=(
)n-2
| an+1+1 |
| an+1-1 |
| ||||
|
| an+1 |
| an-1 |
| an+1 |
| an-1 |
| an+1 |
| an-1 |
∴bn+1=
| 1 |
| 2 |
又n=1时,b1 • log9
| a1+1 |
| a1-1 |
∴{bn}为等比数列,b1=2,q=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目