题目内容
| π | 2 |
椭圆
椭圆
.分析:根据平面π与圆锥的轴成角的大小,利用从不同角度截圆锥体得到的截面的形状,判断出相应的不可能的截面即可.
解答:解:不同倾角的截面截割圆锥,无论是两个对顶的圆锥,还是一个单个的圆锥,都有下面的关系:
(1)β>α,平面π与圆锥的交线为椭圆;
(2)β=α,平面π与圆锥的交线为抛物线;
(3)β<α,平面π与圆锥的交线为双曲线.
由于题中条件:
>β>α,
故平面π与圆锥面的交线为 椭圆.
故答案为:椭圆.
(1)β>α,平面π与圆锥的交线为椭圆;
(2)β=α,平面π与圆锥的交线为抛物线;
(3)β<α,平面π与圆锥的交线为双曲线.
由于题中条件:
| π |
| 2 |
故平面π与圆锥面的交线为 椭圆.
故答案为:椭圆.
点评:本题用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长;注意利用一个角相应的三角函数值求得角的度数.本题考查了圆锥的截面.以及从截面与轴截面的不同位置关系得到截面的不同形状.
练习册系列答案
相关题目