题目内容
如图,三棱锥中,平面,,点,分别为,的中点.
(1)求证:平面;
(2)在线段上的点,且平面.
①确定点的位置;
②求直线与平面所成角的正切值.
已知关于的方程的两根之积等于两根之和,且边为 的两
内角所对的边,则是( )
A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形
三条直线:;:;:不能围成一个三角形,则实数的值为 .
甲,乙两名运动员练习罚球,每人练习10组,每组罚球40个,命中个数的茎叶图如图,则甲,乙两命中个数的中位数分别为( )
A.23,19 B.24,18
C.22,20 D.23,20
总体有编号为的个个体组成.利用下面的随机数表选取个个体,选取方法是从随机数表第行的第列和第列数字开始由左到右依次选取两个数字,则选出来的第个个体的编号为( )
A. B. C. D.
如图,四棱锥中,侧面是边长为2的正三角形,底面是菱形,,点在底面上的射影为的重心,点为线段上的点.
(1)当点为的中点时,求证:平面;
(2)当平面与平面所成锐二面角的余弦值为时,求的值.
若,满足,则的最大值为 .
如果的展开式中各项系数之和为128,则展开式中的系数是 .
如图,四棱锥中,底面是平行四边形,平面,垂足为,在线段上,,,,是的中点,四面体的体积为.
(1)求异面直线与所成角的余弦值;
(2)棱上是否存在一点,使,若存在,求的值,若不存在,请说明理由.