题目内容
(2012•南京一模)在数列{an}中,已知a1=p>0,且an+1•an=n2+3n+2,n∈N*.
(1)若数列{an}为等差数列,求p的值;
(2)求数列{an}的前n项和Sn;
(3)当n≥2时,求证:
>
.
(1)若数列{an}为等差数列,求p的值;
(2)求数列{an}的前n项和Sn;
(3)当n≥2时,求证:
| n |
| i=1 |
| 2 | ||
|
| n-1 |
| n+1 |
分析:(1)设数列{an}的公差为d,由题意得[a1+(n-1)d](a1+nd)=n2+3n+2对n∈N*恒成立,即
,求出首项和公差,再由a1=p>0,求得p的值.
(2)由条件可得
=
,①当n为奇数,求得an=
p,即当n=1时也符合.②当n为偶数,由题意可得 an=
a2 ,因为a1?a2=6,由此求得数列{an}的通项公式.
再用裂项法和放缩法证明两种情况下Sn的值都大于
.
|
(2)由条件可得
| an+2 |
| an |
| n+3 |
| n+1 |
| n+1 |
| 2 |
| n+1 |
| 3 |
再用裂项法和放缩法证明两种情况下Sn的值都大于
| n-1 |
| n+1 |
解答:解:(1)设数列{an}的公差为d,则an=a1+(n-1)d,an+1=a1+nd.由题意得,[a1+(n-1)d](a1+nd)=n2+3n+2对n∈N*恒成立.
即d2n2+(2a1d-d2)n+(a12-a1d)=n2+3n+2. 所以
,即
或
.
因为a1=p>0,故p的值为2. …(3分)
(2)因为an+1?an=n2+3n+2=(n+1)(n+2),所以an+2?an+1=(n+2)(n+3). 所以
=
. …(5分)
①当n为奇数,且n≥3时,
=
,
=
,…,
=
. 相乘得
=
,所以an=
p.当n=1时也符合.
②当n为偶数,且n≥4时,
=
,
=
,…,
=
. 相乘得
=
,所以an=
a2.
因为a1?a2=6,所以a2=
. 所以an=
,当n=2时也符合. 所以数列{an}的通项公式为an=
. …(7分)
当n为偶数时,Sn=p+
+2p+
+…+
p+
=p?
+
•
=
p+
.
当n为奇数时,Sn=p+
+2p+
+3p+
+…+
+
p=p?
+
?
=
p+
.
所以Sn=
. …(10分)
(3)当n为偶数时,
=
+
+
+…+
+
≥4(
+
+…+
)=4[
+
+…+
]
>2[
+
+
+…+
+
]
=2(
-
+
-
+…+
-
)=
.…(13分)
当n为奇数,且n≥2时,
=
+
+
+…+
+
≥4(
+
+…+
)+
>4(
+
+…+
)
>2(
+
+…+
+
)=
.…(15分)
又因为对任意n∈N*,都有
<
,
故当n≥2时,
>
.…(16分)
即d2n2+(2a1d-d2)n+(a12-a1d)=n2+3n+2. 所以
|
|
|
因为a1=p>0,故p的值为2. …(3分)
(2)因为an+1?an=n2+3n+2=(n+1)(n+2),所以an+2?an+1=(n+2)(n+3). 所以
| an+2 |
| an |
| n+3 |
| n+1 |
①当n为奇数,且n≥3时,
| a3 |
| a1 |
| 4 |
| 2 |
| a5 |
| a3 |
| 6 |
| 4 |
| an |
| an-2 |
| n+1 |
| n-1 |
| an |
| a1 |
| n+1 |
| 2 |
| n+1 |
| 2 |
②当n为偶数,且n≥4时,
| a4 |
| a2 |
| 5 |
| 3 |
| a6 |
| a4 |
| 7 |
| 5 |
| an |
| an-2 |
| n+1 |
| n-1 |
| an |
| a2 |
| n+1 |
| 3 |
| n+1 |
| 3 |
因为a1?a2=6,所以a2=
| 6 |
| p |
| 2(n+1) |
| p |
|
当n为偶数时,Sn=p+
| 6 |
| p |
| 10 |
| p |
| n |
| 2 |
| 2(n+1) |
| p |
| ||||
| 2 |
| 2 |
| p |
| ||
| 2 |
| n(n+2) |
| 8 |
| n(n+4) |
| 2p |
当n为奇数时,Sn=p+
| 6 |
| p |
| 10 |
| p |
| 14 |
| p |
| 2n |
| p |
| n+1 |
| 2 |
| ||||
| 2 |
| 2 |
| p |
| ||
| 2 |
| (n+1)(n+3) |
| 8 |
| (n-1)(n+3) |
| 2p |
所以Sn=
|
(3)当n为偶数时,
| n |
| i=1 |
| 2 |
| a12 |
| 2 | ||
|
| 2 | ||
|
| 2 | ||
|
| 2 | ||
|
| 2 | ||
|
| 1 |
| a1a2 |
| 1 |
| a3a4 |
| 1 |
| an-1an |
| 1 |
| 2×3 |
| 1 |
| 4×5 |
| 1 |
| n×(n+1) |
>2[
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| n×(n+1) |
| 1 |
| (n+1)×(n+2) |
=2(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| n |
| n+2 |
当n为奇数,且n≥2时,
| n |
| i=1 |
| 2 |
| a12 |
| 2 | ||
|
| 2 | ||
|
| 2 | ||
|
| 2 | ||
|
| 2 | ||
|
≥4(
| 1 |
| a1a2 |
| 1 |
| a3a4 |
| 1 |
| an-2an-1 |
| 2 | ||
|
| 1 |
| 2×3 |
| 1 |
| 4×5 |
| 1 |
| (n-1)×n |
>2(
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| (n-1)×n |
| 1 |
| n×(n+1) |
| n-1 |
| n+1 |
又因为对任意n∈N*,都有
| n-1 |
| n+1 |
| n |
| n+2 |
故当n≥2时,
| n |
| i=1 |
| 2 |
| a12 |
| n-1 |
| n+1 |
点评:本题主要考查等差数列的定义和性质,等差数列的通项公式,数列与不等式综合,用裂项法进行数列求和,用放缩法证明不等式,属于难题.
练习册系列答案
相关题目