ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$£¬F1£¬F2ÊÇÍÖÔ²CµÄÁ½¸ö½¹µã£¬PÊÇCÉÏÈÎÒâÒ»µã£¬ÇÒ¡÷PF1F2µÄÖܳ¤Îª8+4$\sqrt{3}$£®£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlÓëÍÖÔ²ÏཻÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÒÑÖªµãAµÄ×ø±êΪ£¨-a£¬0£©£¬µãQ£¨0£¬-3£©ÔÚÏß¶ÎABµÄ´¹Ö±Æ½·ÖÏßÉÏ£¬ÇóÏÒABµÄ³¤£®
·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍÍÖÔ²µÄ¶¨Òå¡¢¼°a£¬b£¬cµÄ¹ØÏµ£¬¼ÆËã¼´¿ÉµÃµ½ÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÓÉA£¨-4£¬0£©£¬¿ÉÉèABµÄ·½³ÌΪy=k£¨x+4£©£¬k¡Ù0£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬ÇóµÃMµÄ×ø±ê£¬ÓÉÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£¬¼´¿ÉÇóµÃÏÒ³¤£¬×¢ÒâÌÖÂÛk=0µÄÇé¿ö£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬
ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃ£¬|PF1|+|PF2|=2a£¬
¡÷PF1F2µÄÖܳ¤Îª2a+2c=8+4$\sqrt{3}$£¬
½âµÃa=4£¬c=2$\sqrt{3}$£¬
b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{16-12}$=2£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1£»
£¨¢ò£©ÓÉA£¨-4£¬0£©£¬¿ÉÉèABµÄ·½³ÌΪy=k£¨x+4£©£¬k¡Ù0£¬
´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ£¨1+4k2£©x2+32k2x+64k2-16=0£¬
ÉèB£¨x2£¬y2£©£¬ABµÄÖеã×ø±êΪM£¨x0£¬y0£©£¬Ôò
x0=$\frac{-4+{x}_{2}}{2}$=$\frac{-16{k}^{2}}{1+4{k}^{2}}$£¬y0=k£¨x0+4£©=$\frac{4k}{1+4{k}^{2}}$£¬
ÔòM£¨$\frac{-16{k}^{2}}{1+4{k}^{2}}$£¬$\frac{4k}{1+4{k}^{2}}$£©£¬ÓÉkMQ=-$\frac{1}{K}$£¬¿ÉµÃ4k2-4k+1=0£¬½âµÃk=$\frac{1}{2}$£¬
´ËʱM£¨-2£¬1£©£¬|AB|=2|MA|=2$\sqrt{5}$£»
µ±k=0ʱ£¬ABµÄÖд¹ÏßΪyÖáÒ²ºÏÌâÒ⣬´Ëʱ|AB|=8£®
×ÛÉϿɵã¬ABµÄ³¤Îª8»ò2$\sqrt{5}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½ºÍÍÖÔ²µÄ¶¨Ò壬¿¼²éÏÒ³¤µÄÇ󷨣¬×¢ÒâÔËÓÃÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 85 | B£® | 84 | C£® | 82 | D£® | 81 |
| A£® | y=sin$\frac{1}{2}x$£¬x¡ÊR | B£® | y=sin2x£¬x¡ÊR | C£® | y=$\frac{1}{2}$sinx£¬x¡ÊR | D£® | y=2sinx£¬x¡ÊR |
| A£® | ÒÔABΪµ×±ßµÄµÈÑüÈý½ÇÐÎ | B£® | ÒÔABΪб±ßµÄÖ±½ÇÈý½ÇÐÎ | ||
| C£® | ÒÔACΪµ×±ßµÄµÈÑüÈý½ÇÐÎ | D£® | ÒÔACΪб±ßµÄÖ±½ÇÈý½ÇÐÎ |