题目内容
【题目】已知函数
为
上的偶函数,
为
上的奇函数,且
.
(1)求
和
的表达式;
(2)判断并证明
的单调性;
(3)若存在
使得不等式
成立,求实数
的取值范围.
【答案】(1)
,
;(2)
在
上单调递增,证明见解析;(3)
.
【解析】
(1)根据函数的奇偶性列出两个方程,解出即可;
(2)根据函数单调性的定义,取值、作差、变形、定号、下结论即可证出;
(3)先将不等式
化为
,再换元,
令
,然后分参转化为
,最后求出
的最大值,即得实数
的取值范围.
(1)因为
①,将
换为
,代入上式得
,
由于
是偶函数,
是奇函数,所以
,
,
即
②,
由①②可解得,
,
.
(2)
在
上单调递增.
证明如下:任取
且
,
,
因为当
时,
,所以
,
所以
在
上单调递增.
(3)由题意可得
,
令
,由
可得
,则
,
即原命题等价于存在
使得
成立,
分离参变量得
,只需
即可.
又因为
,所以
,即
,
所以,实数
的取值范围为
.
练习册系列答案
相关题目
【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取
名学生的成绩进行统计分析,结果如下表:(记成绩不低于
分者为“成绩优秀”)
分数 |
|
|
|
|
|
|
|
甲班频数 |
|
|
|
|
|
|
|
乙班频数 |
|
|
|
|
|
|
|
(Ⅰ)由以上统计数据填写下面的
列联表,并判断是否有
以上的把握认为“成绩优秀与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取
人进行考核,记“成绩不优秀”的乙班人数为
,求
的分布列和期望.
参考公式:
,其中
.
临界值表
|
|
|
|
|
|
|
|
|
|