题目内容
14.已知数列{an}的前n项和Sn满足2Sn+an=2n+4(n∈N*).(1)求证:数列{an-1}为等比数列,并求{an}的通项公式.
(2)令bn=$\frac{1}{{3}^{n}{a}_{n}{a}_{n+1}}$,数列{bn}的前n项和为Tn,求证:Tn<$\frac{1}{4}$.
分析 (1)利用递推式可得:2an+an-an-1=2,变形为an-1=$\frac{1}{3}({a}_{n-1}-1)$,利用等比数列的定义及其通项公式即可得出.
(2)bn=$\frac{{3}^{n+1}}{({3}^{n}-1)({3}^{n+1}-1)}$=$\frac{1}{2}(\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1})$,利用“裂项求和”、不等式的性质即可证明.
解答 证明:(1)∵2Sn+an=2n+4(n∈N*),
∴当n=1时,2a1+a1=2+4,解得a1=2.
当n≥2时,2Sn-1+an-1=2(n-1)+4,
2an+an-an-1=2,化为an=$\frac{1}{3}{a}_{n-1}+\frac{2}{3}$,an-1=$\frac{1}{3}({a}_{n-1}-1)$,a1-1=1,
∴数列{an-1}为等比数列,首项为1,公比为$\frac{1}{3}$.
∴an-1=$(\frac{1}{3})^{n-1}$,即an=1-$(\frac{1}{3})^{n}$.
(2)bn=$\frac{1}{{3}^{n}{a}_{n}{a}_{n+1}}$=$\frac{{3}^{n+1}}{({3}^{n}-1)({3}^{n+1}-1)}$=$\frac{1}{2}(\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1})$,
∴数列{bn}的前n项和为Tn=$\frac{1}{2}[(\frac{1}{{3}^{1}-1}-\frac{1}{{3}^{2}-1})$+$(\frac{1}{{3}^{2}-1}-\frac{1}{{3}^{3}-1})$+…+$(\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1})]$
=$\frac{1}{2}(\frac{1}{2}-\frac{1}{{3}^{n+1}-1})$<$\frac{1}{4}$.
∴Tn<$\frac{1}{4}$.
点评 本题考查了递推式的应用、等比数列的定义及其通项公式、“裂项求和”、数列的单调性,考查了推理能力与计算能力,属于中档题.
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |