题目内容
在数列{an}中,a1=1,a2=
,
=
+
(n≥2,n∈N+),令bn=anan+1,则数列{bn}的前n项和为
.
| 1 |
| 2 |
| 2 |
| an |
| 1 |
| an+1 |
| 1 |
| an-1 |
| n |
| n+1 |
| n |
| n+1 |
分析:由等差中项的性质可知,数列{
}是以1为首项,以d=
-
=1为公差的等差数列,结合等差数列的通项公式可求
,进而可求an,代入bn=anan+1=
=
-
,利用裂项求和即可求解
| 1 |
| an |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| an |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:∵a1=1,a2=
,
=
+
∴数列{
}是以1为首项,以d=
-
=1为公差的等差数列
∴
=1+n-1=n
∴an=
∵bn=anan+1=
=
-
∴b1+b2+…+bn=1-
+
-
+…+
-
=1-
=
故答案为:
| 1 |
| 2 |
| 2 |
| an |
| 1 |
| an+1 |
| 1 |
| an-1 |
∴数列{
| 1 |
| an |
| 1 |
| a2 |
| 1 |
| a1 |
∴
| 1 |
| an |
∴an=
| 1 |
| n |
∵bn=anan+1=
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴b1+b2+…+bn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
故答案为:
| n |
| n+1 |
点评:本题主要考查了等差中项法在等差数列的判断中的应用,等差数列的通项公式及裂项求和方法的应用
练习册系列答案
相关题目