题目内容


求sin210°+cos240°+sin10°cos40°的值.


解:(解法1)因为40°=30°+10°,于是原式=sin210°+cos2(30°+10°)+sin10°cos(30°+10°)=sin210°++sin10°·(cos10°-sin10°)=

(sin210°+cos210°)=.

(解法2)设x=sin210°+cos240°+sin10°cos40°,y=cos210°+sin240°+cos10°sin40°.则x+y=1+1+sin10°cos40°+cos10°sin40°=2+sin50°=2+cos40°,x-y=cos80°-cos20°-=-sin50°-=-cos40°-.因此2x=,故x=.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网