题目内容
求和:Sn=(x+
)2+(x2+
)2+…+(xn+
)2.
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| xn |
当x=±1时,
∵(xn+
)2=4,∴Sn=4n,
当x≠±1时,
∵an=x2n+2+
,
∴Sn=(x2+x4++x2n)+2n+(
+
++
)=
+
+2n
=
+2n,
所以当x=±1时,Sn=4n;
当x≠±1时,Sn=
+2n.
∵(xn+
| 1 |
| xn |
当x≠±1时,
∵an=x2n+2+
| 1 |
| x2n |
∴Sn=(x2+x4++x2n)+2n+(
| 1 |
| x2 |
| 1 |
| x4 |
| 1 |
| x2n |
| x2(x2n-1) |
| x2-1 |
| x-2(1-x-2n) |
| 1-x-2 |
=
| (x2n-1)(x2n+2+1) |
| x2n(x2-1) |
所以当x=±1时,Sn=4n;
当x≠±1时,Sn=
| (x2n-1)(x2n+2+1) |
| x2n(x2-1) |
练习册系列答案
相关题目