题目内容
x,y∈(0,2],且xy=2,且6-2x-y≥a(2-x)(4-y)恒成立,则实数a取值范围是
(-∞,1]
(-∞,1]
.分析:先换元,令2x+y=t并求出它的取值范围,然后利用分离法将参数a分离出来,求不等式另一侧的最值即可.
解答:解:令2x+y=t,
∵x,y∈(0,2],且xy=2,
∴2x+y=2x+
≥2
=4,
∴t∈[4,5]
∵6-2x-y≥a(2-x)(4-y)=a(8-4x-2y+xy)=a(10-4x-2y)
∴6-t≥a(10-2t),
a≤
,
∴当t=4时,a≤(
))min=1
故答案为(-∞,1].
∵x,y∈(0,2],且xy=2,
∴2x+y=2x+
| 2 |
| x |
2x•
|
∴t∈[4,5]
∵6-2x-y≥a(2-x)(4-y)=a(8-4x-2y+xy)=a(10-4x-2y)
∴6-t≥a(10-2t),
a≤
| 6-t |
| 10-2t |
∴当t=4时,a≤(
| 6-t |
| 10-2t |
故答案为(-∞,1].
点评:本题主要考查了函数恒成立问题,以及换元法的应用,解题时要认真审题,注意均值不等式的合理运用.
练习册系列答案
相关题目