题目内容
已知对称轴为坐标轴且焦点在x轴上的双曲线,两个顶点间的距离为2,焦点到渐近线的距离为2,则双曲线的方程为________.
x2-
=1
分析:设双曲线方程为
,根据题意易得a=1,由双曲线的渐近线方程的公式和点到直线的距离公式,解出b=2,即可得到该双曲线的方程.
解答:设双曲线方程为
(a>0,b>0)
∵两个顶点间的距离为2,∴2a=2,得a=1
又∵焦点F(c,0)到渐近线bx±ay=0的距离等于2
∴
=2,得b=2
由此可得该双曲线方程为:x2-
=1
故答案为:x2-
=1
点评:本题给出双曲线满足的基本条件,求双曲线方程.着重考查了双曲线的基本概念和简单几何性质等知识,属于基础题.
分析:设双曲线方程为
解答:设双曲线方程为
∵两个顶点间的距离为2,∴2a=2,得a=1
又∵焦点F(c,0)到渐近线bx±ay=0的距离等于2
∴
由此可得该双曲线方程为:x2-
故答案为:x2-
点评:本题给出双曲线满足的基本条件,求双曲线方程.着重考查了双曲线的基本概念和简单几何性质等知识,属于基础题.
练习册系列答案
相关题目