题目内容
13.函数$f(x)=\frac{1}{3}{x^3}-4x+4$在[0,3]上的最值是( )| A. | 最大值是4,最小值是$-\frac{4}{3}$ | B. | 最大值是2,最小值是$-\frac{4}{3}$ | ||
| C. | 最大值是4,最小值是$-\frac{1}{3}$ | D. | 最大值是2,最小值是$-\frac{1}{3}$ |
分析 求出函数的导数,求得导数为0的极值点,再求极值和端点处的函数值,比较即可得到最大值和最小值.
解答 解:函数f(x)=$\frac{1}{3}$x3-4x+4的导数为f′(x)=x2-4,
由f′(x)=0,可得x=2(-2舍去),
∴f(x)在[0,2)上单调递减,在(2,3]上单调递增,
∴f(x)min=f(2)=$\frac{8}{3}$-4=-$\frac{4}{3}$,f(0)=4,f(3)=1,
可得f(x)[0,3]上的最大值为4.
故选:A
点评 本题考查导数的运用:求极值和最值,主要考查运用导数求最值的方法,属于基础题.
练习册系列答案
相关题目
4.在同一平面直角坐标系中,经过伸缩变换$\left\{\begin{array}{l}{x′=5x}\\{y′=3y}\end{array}\right.$后,曲线C变为曲线x′2+4y′2=1,则曲线C的方程为( )
| A. | 25x2+36y2=1 | B. | 9x2+100y2=1 | C. | 10x+24y=1 | D. | $\frac{2}{25}$x2+$\frac{8}{9}$y2=1 |
1.下列说法正确的是( )
| A. | 任何两种变量都具有相关关系 | |
| B. | 某商品的生产量与该商品的销售价格之间是一种非确定性的关系 | |
| C. | 农作物的产量与施肥之间是一种确定性关系 | |
| D. | 球的体积与该球的半径具有相关关系 |
5.同时抛掷两颗均匀的骰子,请回答以下问题:
(1)填空:两颗骰子都出现2点的概率为$\frac{1}{36}$;
(2)若同时抛掷两颗骰子180次,其中甲骰子出现20次2点,乙骰子出现30次2点,
①根据以上数据,完成如表的2×2的列联表;
②提出假设H0:两颗骰子出现2点无关,请根据所学的统计知识,说明两颗骰子出现两点是否相关?若无关,请说理,若相关,请回答我们有多大的把握认为两颗骰子出现两点相关?
| 出现2点 | 出现其他点 | 合计 | |
| 甲骰子 | 20 | 160 | 180 |
| 乙骰子 | 30 | 150 | 180 |
| 合计 | 50 | 310 | 360 |
(2)若同时抛掷两颗骰子180次,其中甲骰子出现20次2点,乙骰子出现30次2点,
①根据以上数据,完成如表的2×2的列联表;
②提出假设H0:两颗骰子出现2点无关,请根据所学的统计知识,说明两颗骰子出现两点是否相关?若无关,请说理,若相关,请回答我们有多大的把握认为两颗骰子出现两点相关?
2.过原点的直线l与抛物线y=x2-2ax(a>0)所围成的图形的面积为y=$\frac{9}{2}$a3,则直线l的方程为( )
| A. | y=ax | B. | y=ax或y=-6ax | C. | y=-ax | D. | y=ax或y=-5ax |