题目内容
已知函数有两个极值点,,且,则( )
A. B.
C. D.
如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为m,制造这个塔顶需要多少面积的铁板?
已知椭圆:的右焦点为,短轴的一个端点到的距离等于焦距.
(1)求椭圆的方程;
(2)过点的直线与椭圆交于不同的两点,,是否存在直线,使得△与△的面积比值为?若存在,求出直线的方程;若不存在,说明理由.
抛物线的焦点坐标是( )
A. B. C. D.
椭圆C:的离心率为,短轴的一个端点到右焦点的距离为.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于两点,求两点间的距离
如图,空间四边形中,.点在上,且,点为中点,则( )
A. B.
C. D.
从三角形内部任意一点向各边引垂线,其长度分别为d1,d2,d3,且相应各边上的高分别为h1,h2,h3,求证:++=1.类比以上性质,给出空间四面体的一个猜想,并给出证明.
设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是( )
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(,)
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg
已知函数的图象与轴恰有两个公共点,则=( )
A.2或2 B.9或3 C.1或1 D.3或1