题目内容

13.已知函数f(x)=2cosxsin(x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$.
(Ⅰ)求函数f(x)的最小正周期和对称中心;
(Ⅱ)求函数f(x)在区间[$\frac{π}{3}$,π]上的取值范围.

分析 (Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2x+$\frac{π}{3}$),利用三角函数周期公式可求T,令2x+$\frac{π}{3}$=kπ,k∈Z,解得函数的对称中心.
(Ⅱ)由范围x∈[$\frac{π}{3}$,π],利用正弦函数的图象和性质即可得解函数的取值范围.

解答 (本题满分为13分)
解:(Ⅰ)∵f(x)=2cosxsin(x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$
=2cosx(sinxcos$\frac{π}{3}$+cosxsin$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$
=sinxcosx+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$
=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x
=sin(2x+$\frac{π}{3}$),…5分
∴T=$\frac{2π}{2}$=π,…6分
∴令2x+$\frac{π}{3}$=kπ,k∈Z,解得:x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,即函数的对称中心为:($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z…7分
(Ⅱ)∵x∈[$\frac{π}{3}$,π],
∴f(x)在区间[$\frac{π}{3}$,$\frac{7π}{12}$]单调递增,在区间[$\frac{7π}{12}$,π]单调递减,
∵f($\frac{π}{3}$)=sinπ=0,f($\frac{7π}{12}$)=sin$\frac{3π}{2}$=-1,f(π)=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,
∴函数f(x)在区间[$\frac{π}{3}$,π]上的取值范围为[-1,$\frac{\sqrt{3}}{2}$]…13分

点评 本题值域考查了三角函数恒等变换的应用,三角函数周期公式,正弦函数的图象和性质的应用,考查了转化思想和数形结合思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网